MAKING IS A DYNAMIC AND HANDS-ON LEARNING EXPERIENCE that directly connects with long-established theories of how learning occurs. Although it hasn’t been a focus of traditional education or had a prominent place in the classroom, teachers find it an accessible, exciting option for their students.

The maker movement brings together diverse communities dedicated to creating things through hands-on projects. Makers represent a growing community of builders and creators—engineers, scientists, artists, DIYers, and hobbyists of all ages, interests, and skill levels—who engage in experimentation and cooperation.

Transferring this innovative, collaborative, and creative mindset to the classroom is the goal of maker education. A makerspace isn’t just about the latest tools and equipment. Rather, it’s about the learning experiences and opportunities provided to students. Maker education spaces can be as large as a school workshop with high-tech tools (e.g., 3D printers and laser cutters) or as small and low-tech as the corner of a classroom with bins of craft supplies. Ultimately, it’s about the mindset—not the “stuff.”

In Learning in the Making, Jackie Gerstein helps you plan, execute, facilitate, and reflect on maker experiences so both you and your students understand how the knowledge, skills, and attitudes of maker education transfer to real-world settings. She also shows how to seamlessly integrate these activities into your curriculum with intention and a clearly defined purpose.
Preface ................................................................. 1
1. A Precedence for Maker Education ......................... 3
2. Why Maker Education Is Important
   for a 21st Century Education. ................................ 12
3. Exploring Maker Education Through Different Lenses .... 24
4. Inclusion and Maker Education .............................. 38
5. The Role of the Educator as a Maker Educator ............ 44
6. How to Set Up the Classroom or Library as a Makerspace.. 55
7. A Framework for Implementing Maker Experiences ........ 64
8. Integrating Maker Experiences into the Curriculum ........ 78
9. Maker Education and Assessment .......................... 91
10. Example Maker Education Lessons ......................... 100
References .......................................................... 136
Index ................................................................. 143
About the Author ................................................ 150
Preface

Maker education is a fairly new school of thought in education circles. It focuses on delivering a constructivist, project-based, hands-on learning curriculum and instruction experience to students. Maker education spaces can be as large as a school workshop with high-tech tools (e.g., 3D printers and laser cutters) or as small and low-tech as the corner of a classroom. A maker-space isn’t just about the tools and equipment; rather, it’s about the learning experiences the space provides to students who are making projects (Waters, 2015). As discussed in this book, maker education is more about the mindset of the teachers and students than it is about the “stuff.”

Sparkfun Education, a leading maker education company, describes maker education as more than just tinkering with the flashy stuff—it is about building educational experiences that are based in the real world, allow student choice, and achieve multiple objectives. Maker education can be used in a variety of ways, and projects can be adjusted in scale or scope to meet individual class or student needs. Successful maker education implementation is about finding project ideas that seamlessly integrate “making” into the curriculum. It is about providing engaging educational experiences that bring out the best in students and teach them about problem solving, tenacity, perseverance, and determination (Sparkfun Education, n.d.).
There’s a proliferation of maker activities and makerspaces within formal and informal educational settings, but there’s limited guidance on how to implement those activities with intention and a clearly defined purpose. A goal of this book, then, is to provide a background and framework so maker education moves beyond the educational trend or flavor of the month and does not fade into the background—which is the case for far too many educational trends (e.g., character counts, learning styles, right-left brain teaching strategies, flipped classroom). This book will assist the educator in the planning, execution, facilitation, and reflection of maker experiences so both educators and learners will understand the connections between making and the content and how knowledge, skills, and attitudes transfer to real-world settings.
Humans have had a need to create and make since the beginning of their time on Earth. A lot of that making had to do with survival—making tools for agrarian and hunting cultures, for their homesteads, and for keeping themselves and their families safe from human and animal predators. Their acts of creativity also revolved around making for the pure joy of it. For example, people have long decorated pottery and made petroglyphs, sculptures, jewelry, and clothing. Making is an innate human need and desire.

A characteristic of the 20th century was the advent of mass production and the factory assembly line. Products that used to be handmade by individuals were suddenly made through standardized manufacturing processes that efficiently pumped out products in great quantity. Mass production is typically characterized by some type of mechanization, such as an assembly line, to achieve high volume, detailed organization of materials flow, careful control of high-quality standards, and division of labor (Kenton, 2019). One of the biggest benefits of mass production was the ability to produce large quantities of products at a minimal cost. However, one of the casualties was the widespread art of handmade products tailored to individual desires and specifications.

Arguably, another casualty was the carryover of a mass production mentality into education settings. Since the 19th century,
Learning in the Making

the United States and other countries have adopted the Prussian model of teaching, also known as the factory model school. “We would recognize the manifestation of this model fairly easily: a teacher at the front of the room, and neat rows of desks with students sitting in front of him/her. The purpose of this structure is fairly simple: the teacher is giving students information in ‘assembly-line fashion,’ and the students—through memorization, repetition, and eventually testing—hopefully retain it” (Hochdorf, 2016, para. 2).

Making is essential to the human experience, but it hasn’t been a part of classical education or a focus of Western education. Hands-on learning, innovating, making, and creating in the school environment has been a causality of this movement. Nevertheless, several events have converged in the past few years as a type of backlash against mass-produced products and education, which has helped to birth the maker movement and the maker education movement in both formal and informal educational settings.

The maker movement is a relatively new phenomenon—built from familiar pieces—but its relevance to education has deep roots. It has long been stated that children and youth can learn by playing and building with interesting materials and tools (Montessori, 1912 as cited in Martin, 2015, p. 31).

Making often fosters learning in a variety of ways that directly connects with long-established theories of how learning occurs. “For example, testing ideas out in the world allows one to check expectations against reality, a process that can create conceptual disequilibrium, and can in turn lead to conceptual adaptation” (Piaget, 1950 as cited in Martin, 2015, p. 31). Physical creations also create a context for social engagement around a shared endeavor. “This can bring more- and less-experienced participants together around a common task—a configuration that often proves fruitful for learning” (Martin, 2015, p. 31).

The philosophy driving the maker movement is as old as the human species. Today’s vibrant, passionate, and active maker movement builds on this tradition. Make: magazine (founded in 2005 by Dale Dougherty) and the many Maker Faires that occur around the world have helped popularize the maker movement.
and propel it forward. In true open-source form, the whole movement brings together diverse communities involved in the process of creating things through hands-on efforts—from sewing to 3D printing. Makers represent a growing community of builders and creators—engineers, scientists, artists, DIYers, and hobbyists of all ages, interests, and skill levels—who engage in experimentation, collaboration, and innovation (Singh, 2018).

The maker movement was born out of several events that converged to create the environment we see today:

• The do-it-yourself (DIY) movement.
• A focus on STEM and STEAM education.
• A push for 21st century skills and competencies.
• Information access and abundance.
• Affordable maker technologies.
• A crowdsourcing and participatory culture.
• Open-source resources.

The Do-it-Yourself (DIY) Movement

Do it yourself, or DIY, is a term used by various communities of practice that focus on people creating things for themselves without the aid of paid professionals. The DIY movement emerged partially from a revolt against high-priced consumerism, and its popularity can be indirectly measured through the marked increase of classes offered by retail stores such as Home Depot, Lowes, and Michaels and through the increasing popularity of DIY websites such as Instructables (www.instructables.com), Make: magazine (https://makezine.com/projects), and DIY for younger makers (https://diy.org). DIY offers many benefits and life skills, such as developing ingenuity, learning from mistakes, realizing financial savings, customizing objects, having fun, and using one’s own brain and hands. Making things is about personalization, and therein lies the value of DIY. One’s creativity and skills develop along with a sense of art and logic.

Young people are growing up in a DIY culture where they have role models who engage in DIY and have immediate access
to information, tutorials, and technological resources online. It follows that the DIY culture is influencing teachers’ and students’ desire to make and create for themselves both within and outside of educational settings.

A Focus on STEM and STEAM Education

There is a growing need in workplace settings for employees to possess STEM and STEAM related skills. As such, there has been a push for STEM and STEAM education in school curricula and afterschool programs. Science, technology, engineering, and math skills—with an added focus on the arts—prepare learners not only for many different jobs but also to have richer personal lives now and in the future. Evans and Milgrom-Elcott (2017) state, “Whatever today’s kids want to be able to do tomorrow, they will need serious STEM skills” (para. 10). This includes the ability to use their skills to tackle new dilemmas and solve new problems. This “will be true whether they become a mechanic called in to fix something they’ve never seen before, or a medical professional faced with an outbreak of a new disease” (para. 10). Education needs to be about helping young people acquire the skills they’ll need to live successful, productive, and satisfactory lives. In this “rapidly changing world, where it’s difficult to predict what challenges and technologies lie ahead, it is more important than ever that kids learn to think carefully, critically, and creatively” (para. 17).

Maker education can be a gateway to STEM disciplines for students who may not have had an interest in science, technology, engineering, or math. Teachers have reported that making can be a great way to get students excited and engaged in their learning. Many projects in subject-area classes incorporate making and a variety of STEM topics. “Students working on designing and building furniture for their classroom use algebra and geometry to figure out the dimensions. E-textiles and soft circuitry, in which circuits are sewn using conductive thread or fabric, have shown to be an engaging way to teach electronics and programming,
A Precedence for Maker Education

especially for young women. The possibilities for ways to incorporate making into the school day are endless, and it is exciting to see what teachers have been developing and sharing” (Thomas, 2012, para. 6).

STEAM, in which the arts are integrated into STEM, has been touted as an important addition to STEM education. Educators can situate learners for future careers by bringing STEM and STEAM into the learning environment. In addition, STEM and STEAM integrates cross-curricular standards, including those specified by the Next Generation Science Standards and the Common Core State Standards in both math and science, lending credibility to its implementation by teachers.

A Push for 21st Century Skills and Competencies

The Partnership for 21st Century Learning (a network of Battelle for Kids) has developed a framework that identifies four learning and innovation skills—creativity, critical thinking, communication, and collaboration—that are essential to prepare students for the increasingly complex life and work environments of the 21st century (Battelle for Kids, n.d.).

Many schools have embraced these skills and include them in the standards they expect students to learn. The National Education Association (NEA, n.d.) has stated, “All educators want to help their students succeed in life. What was considered a good education 50 years ago, however, is no longer enough for success in college, career, and citizenship in the 21st century” (para. 1). As such, the NEA recommends the implementation of the “four Cs” as developed and disseminated by the Partnership for 21st Century Learning.

At the 2018 Maker Faire in New York City, the young cast of Mythbusters Jr (ages 13–15) were asked, “What skills do you think you need to be a maker?” They mentioned, creativity, teamwork (collaboration), and communication—three out of the four learning and innovation skills identified by the Partnership for 21st Century Learning.
Information Access and Abundance

We are living in one of the most exciting times in the history of humankind. Our world is filled with an abundance of information—and access to it has never been easier. We have technologies to access any type of information and get the assistance and feedback from people around the world. We also have the ability to create products that match (and exceed) our imaginations. The internet grants access to all kinds of information, resources, and tutorials. For example, DIYers can go online to find information and tutorials via YouTube, Wikipedia, and various social networks. There are YouTube channels (and other websites) for sparking curiosity and inspiring creativity, for learning how to use different technologies, for exploring and learning about different science and math concepts, and for learning different types of arts.

Young makers have taken advantage of this easy and free access to make valuable contributions to the world. For example, Jack Andraka, as a high school sophomore, discovered a test for pancreatic cancer by reading science research he found online (Tucker, 2012). Ninth grader Katherine Wu invented the driver’s companion, a device that could monitor drivers’ blinks and brain waves to see if they were in danger of falling asleep at the wheel. She studied neuroscience to find out how to identify signs of sleepiness and took an online course to learn how to create the computer code that would recognize those signs (Kaplan, 2014).

In terms of maker education and the bigger picture of self-directed learning, this information abundance and access means the teacher no longer needs to be the sole content expert on every topic. Their role can change into that of facilitator. Indeed, their trepidation about bringing maker education into the learning environment could be reduced due to all the information and tutorials available to students.

Affordable Maker Technologies

Maker technologies, such as 3D printers, laser cutters, Arduinos, Raspberry Pis, micro:bits, Hummingbird kits, and other robotics
and computer kits, provide relatively inexpensive opportunities for learners to experiment and invent for themselves. Most are accessible and usable by a wide range of skills and age levels. The availability of affordable tools and technologies and the ability to share inventions and resources online “has fueled this evolutionary spurt in this facet of human development. New tools that enable hands-on learning—3D printers, robotics, microprocessors, wearable computers, e-textiles, ‘smart’ materials and new programming languages—are giving individuals the power to invent” (Martinez & Stager, 2019b, para. 2).

Accessibility of these affordable maker technologies is due, in part, to the democratization of the field and medium. “When used in the context of the maker movement, ‘democratization’ refers to the decreasing cost of the tools and technologies credited with spurring the movement” (Britton, 2014, para. 12). Even though there is a cost attached to them, these tools and technologies are more accessible to those with fewer financial resources than similar ones were in the past. This results in the increased potential of anyone, anywhere to be a maker, an inventor, and an innovator—including students coming from lower income and marginalized populations.

A Crowdsourcing and Participatory Culture

The maker movement and makerspaces are driven by principles of crowdsourcing and participatory cultures. Makers, as a group, freely share their projects so others can replicate and/or improve upon them. Adam Savage (of Mythbusters fame) has defended “sharing as a vital aspect of maker culture that is intrinsic to the underlying ethos of what it means to be a maker, and by extension, a human being” (quoted in Frauenfelder, 2018, para. 2). This type of sharing is a trademark of a participatory culture.

Many maker movement initiatives are rooted in the idea of participatory culture, a term coined by media expert Henry Jenkins. Jenkins identified the key elements of a participatory culture to include low barriers to engagement and expression, support for
Learning in the Making

creating and sharing one’s creations with others, and informal
types of mentorship whereby those with the most experience pass
along information, strategies, and resources to beginners (Fleming,
2015).

Dale Dougherty, considered by many to be the father of the
maker movement, has stated, “The Maker Movement is spurred
by… the increasing participation of all kinds of people in intercon-
nected communities, defined by interests and skills online as well
as hyper-local efforts to convene those who share common goals”
(Dougherty, n.d., para. 1). Likewise, Massimo Banzi, inventor of
the popular technology Arduino, has noted how a participatory
maker culture spurs creativity. Whenever a tool is designed that
allows people to be creative, there are also people who start to be
creative with that tool. This is a world where people become more
involved in the creation of products (Orsini, 2014).

Open-Source Resources

Open-source software is software that can be freely used, changed,
and shared (in modified or unmodified form) by anyone at any
time and for any reason. It is created and developed by diverse
populations and distributed under licenses that comply with this
open-source definition. Makers often share their projects so others
can reproduce and/or improve upon them. For example, Thingi-
verse is one of the largest and most well-known online repositories
of open-source 3D designs. A quick search of the website (www.
thingiverse.com) shows designs for everything from prosthetic
devices to footwear to toys.

The sharing culture that comprises the maker movement has
wider effects in that many technology companies make their soft-
ware and hardware open source:

Open-source hardware shares much of the principles and
approach of free and open-source software. In particular, we
believe that people should be able to study our hardware
to understand how it works, make changes to it, and share
those changes. To facilitate this, we release all of the original
design files (Eagle CAD) for the Arduino hardware. These
files are licensed under a Creative Commons Attribution Share-Alike license, which allows for both personal and commercial derivative works, as long as they credit Arduino and release their designs under the same license. The Arduino software is also open-source. (Arduino, n.d.)

The bottom line is that educators in both formal and informal settings would be foolish not to take advantage of this plethora of resources, tools, and strategies that currently exist.
References


References


ADVANCE UNCORRECTED COPY - NOT FOR DISTRIBUTION
Learning in the Making


About the Author

Jackie Gerstein teaches graduate-level online courses for Walden, Western’s Governors, and Boise State Universities, and she teaches gifted education for Santa Fe Public Schools. Her motto is “I don’t do teaching for a living; I live teaching as my doing and technology has amplified my passion for doing so.” Her background includes a strong focus on experiential learning, which she brings into all of her teaching. Gerstein believes that one of the roles and responsibilities of the 21st century educator is to share resources, ideas, and instructional strategies with other educators. As such, she blogs at https://usergeneratededucation.wordpress.com and tweets at @jackiegerstein.